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Bubble dynamics in a compressible liquid. 
Part 2. Second-order theory 
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The radial dynamics of a spherical bubble in a compressible liquid is studied by 
means of a rigorous singular-perturbation method to second order in the bubble-wall 
Mach number. The results of Part 1 (Prosperetti & Lezzi, 1986) are recovered at 
orders zero and one. At second order the ordinary inner and outer structure of the 
solution proves inadequate to correctly describe the fields and it is necessary to 
introduce an intermediate region the characteristic length of which is the geometric 
mean of the inner and outer lengthscales. The degree of indeterminacy for the radial 
equation of motion f o k d  at first order is significantly increased by going to second 
order. As in Part 1 we examine several of the possible forms of this equation by 
comparison with results obtained from the numerical integration of the complete 
partial-differential-equation formulation. Expressions and results for the pressure 
and velocity fields in the liquid are also reported. 

1. Introduction 
In a preceding paper (Prosperetti & Lezzi 1986, hereinafter referred to as I) the 

problem of the derivation of an approximate equation for the radial motion of a 
bubble in a compressible liquid was considered. Use was made of a simplified version 
of the method of matched asymptotic expansions and results valid to first order in 
the Mach number of the flow were obtained. An attempt to proceed to the next step 
in the perturbation solution by the same method fails because of its inadequacy to 
handle the complex mathematical structure which appears at the second order. In 
the present paper we make use of a more sophisticated version of the matched 
asymptotic expansion technique and succeed in obtaining an equation of motion for 
the bubble radius valid to second order in the Mach number. This equation is 
actually a two-parameter family. The same non-uniqueness problem encountered in 
I appears, compounded by the presence of an extra degree of freedom at the next 
order. Furthermore, no indication as to which of the first-order equations is to be 
preferred can be obtained by an examination of the second-order results. In the same 
spirit as in I we consider numerical solutions of the exact partial differential 
formulation of the problem in an attempt to discriminate among the possible 
equations. 

While up to the first order in the Mach number the solution has the customary 
structure of an inner and an outer expansion, it is found that at the second order an 
intermediate region arises from the outer field and acts as a sort of buffer between it 
and the inner one. Proper inclusion of this solution is essential for matching and the 
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correct determination of the fields although, if one were to proceed blindly ignoring 
this problem, the same equation of motion for the bubble radius would be found. A 
situation similar to the one encountered here arises in the theory of aerodynamic 
sound generation by the flow of a compressible fluid (Obermeier 1976). The ideas of 
Kaplun (1967) on limit equations and matching (see also Lagerstrom & Casten 1972) 
furnish, here as in that problem, the key to the correct solution. 

2. Mathematical formulation 

velocity potential cp the equation of continuity is 
We summarize here the mathematical formulation derived in I. In terms of the 

where c2 = dp/dp is the speed of sound in the liquid and 

is the liquid enthalpy referred to the undisturbed pressure at  infinity p,. The 
Bernoulli integral is 

(2.3) 

assuming that +/at + 0 a t  infinity. The kinematic condition at  the bubble boundary 
R(t) is 

dR 
dt u(r, t )  = - a t  r = R(t), (2.4) 

while the condition on the normal stresses stipulates that 

where p, is the pressure on the liquid side of the interface, pi the bubble internal 
pressure, c the surface tension, and ,LA the viscosity. For the liquid we take a 
pressure-density relationship of the modified Tait form (Cole 1948) 

where B and n are constants and pm denotes the undisturbed value of the density, 
from which we have the explicit expressions 

Ce = n@+B) =c2,+(n-l)h,  (2.7) 
P 

The boundary condition (2.5) will be enforced in the form 

h(r, t )  = h,(t) at  r = R(t), 
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where h, is obtained from (2.8) with p ,  given by (2.5) and is 
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(2.10) 

3. Non-dimensional variables and scaling 
We introduce scale units for length, R,, and velocity, U, which will be taken of the 

order of the bubble size and bubble-wall velocity. The typical scales for time and 
enthalpy are T and H ,  respectively. In terms of these quantities the following non- 
dimensional variables, denoted by asterisks, are defined : 

r = R,T*, R = R,R,, t = Tt,, 
(3.1) 

9, = R,Uq,, h = Hh,, c = c,c,.j 

In the definition of tp, we have taken R, U as the appropriate scale for the potential 
in conformity with the relation u = &/&. Upon substitution into (2.1), (2.3) and 
(2.4) it is found that three independent dimensionless parameters appear, which may 
be chosen as 

In terms of the dimensionless quantities the equations become 

c* = l+(n-l)€2C,eh,. 

c, = 0(1),  c, = 0(1), E + O .  

We shall consider this system in the limit 

The fist  condition stipulates that the bubble radius undergoes a change of order 
R, during the typical time T. It is dictated by the form of the boundary condition 
(3.5) if situations are to be described in which the velocity field in the liquid is 
influenced primarily by the motion of the bubble boundary. The enthalpy scale H is 
a measure of the internal energy of the liquid and C, = O( 1) implies that this energy 
is of the order of the kinetic energy, both per unit mass. This is clearly the situation 
of physical interest and is dictated by (3.4) if the dynamic boundary condition (2.9) 
is to play a significant role in the phenomenon investigated. Finally, E is a measure 
of the Mach number of the liquid flow induced by the bubble-wall motion and the 
condition E Q 1 is the appropriate one for the case of small compressibility effects. 

In view of (3.6) we take C, = C, = 1. Furthermore, eliminating c i  and h, from (3.3) 
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using (2.7) and (2.8) we arrive at the following dimensionless equation for the 
potential : 

(3.7) 
Equations (3.4), (3.5) and (2.9) are 

h, = h,, atr, = R,. (3.10) 

To lowest order in B the field equation (3.7) is just Laplace's equation and therefore 
we do not expect any strong shock wave to be predicted by these equations near the 
bubble. The analysis of the outer equations given later shows that, with the present 
model, shock waves do not form in the far field either. Such highly nonlinear effects 
can only be brought out by the use of scalings other than (3.6). For example, near 
the point of minimum radius of a very violent collapse, the motion is characterized 
by a very short timescale and large pressures. This implies C ,  small and C, large. In 
order to balance terms in the Bernoulli integral (3.4) we must have C, C ,  = 1,  and the 
group B~C,/C, of the field equation (3.3) becomes e2C;. The appropriate scaling for this 
situation would then clearly be C ,  = 1 / ~ ,  C, = E ,  which would bring the system into 
the form 

(3.11) 

(3.12) 

(3.13) 

The lowest-order equations arising from this system describe a nonlinear wave and 
will therefore most likely lead to a shock wave in the vicinity of the bubble. 

Ideally, the solution procedure for a situation of violent collapse should therefore 
involve the introduction of a boundary layer in time in which the solution of the 
system (3.11)-(3.13) is matched to that of (3.7)-(3.9). It is doubtful that such a 
complex analytical approach would lead to a usable approximate equation for the 
radial motion and that i t  would be superior to a direct numerical solution of the exact 
equations (2.1)-(2.6). Furthermore, the strong instability of the spherical shape 
which would set in in these circumstances might turn the whole analysis into a rather 
sterile mathematical exercise. 

The primary concern of the present study is to derive an equation of motion for 
the bubble radius incorporating in an approximate way the effects of liquid 
compressibility and simple enough to be of practical use. Hence we restrict ourselves 
to the scaling (3.6), and therefore our results will only be applicable to situations in 
which shock-wave formation in the liquid has a negligible effect on the dynamics of 
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the bubble. A vast number of problems in which bubbles are involved fall into this 
category and, even when shock waves are important, our results can be a useful first 
approximation. We partially exploit some of the information obtained from the 
second scaling mentioned by noting that, near the point of minimum radius, (3.12) 
indicates that the proper scale for h is not u2, but +/at. Thus h can be large where 
+,/at is large, even though the Mach number may be small. This observation suggests 
that we should not try to approximate h in terms of the pressure, as in (3.1) of I 
(which would be legitimate at small Mach numbers) but rather that we deal with the 
enthalpy directly. Accordingly, we shall make use of the exact functional relation 
(2.10). It will be seen from the numerical results that this procedure does indeed lead 
to a better description of the process. As noted in I, the use of h is the reason for the 
good performance of the Gilmore equation previously noted by Hickling & Plesset 
(1964). 

4. Solution strategy 
The speed of sound in the undisturbed liquid c, and the timescale T define a length 

L = c, T which characterizes the order of magnitude of distances at which the effects 
of a finite (rather than infinite) speed of sound are significant. Since C, = 1 we 
have 

The presence of two very different spatial scales suggests the application of a singular 
perturbation method to the present problem. This will be done rather formally 
following the matched asymptotic expansion method as set out by Lagerstrom & 
Casten (1972), since the simpler approach of I, although adequate to order 1 and B ,  

will be seen to fail at order e2. 
The important feature of the singular perturbation method is to allow a clear 

assessment of the orders of magnitude of the terms appearing in the equations in the 
different regions of the liquid. This result is obtained by the introduction of a scaled 
variable (Lagerstrom & Casten 1972) 

T7/ = 7("r* (4.2) 

into the equations of the problem. Different choices of the magnitude of the gauge 
functions q ( ~ )  give rise to different limit forms of the equations as B + 0. Some of these 
limit equations contain others, while they themselves are not contained in any other. 
These particularly 'rich' equations are termed distinguished equations and they are 
the equations to be solved. To illustrate this procedure we carry it out in detail at the 
lowest order in 8 in $ 5  and at  the next order in Appendix A. 

It is clear that only the asymptotic behavior of V ( E )  as E + O  is significant in this 
procedure. Therefore equivalence classes are introduced such that ql and q2 belong 
to the same class if 7, = O(q2) as E + O .  All the functions 7 such that 7 = O(V) are 
collectively denoted by ord f .  A partial ordering can be established among different 
equivalence classes such that 

ord rll < ord q2 
if 7, = o(qz)  as s+O. 

In the following we shall apply the method of matched asymptotic expansions 
considering simultaneously both (3.7) and (3.8). A t  first sight this might appear 
unnecessary since the potential can be obtained by solving (3.7) with the boundary 
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condition (3.9), and (3.8) used afterwards .to calculate h. This procedure will be seen 
to result in problems in the matching of the enthalpy fields in the liquid, although 
it leads to a correct form of the bubble equation of motion. The origin of this 
difficulty is that, due to the differential operators acting onv* in (3.8), a solution for 
v, accurate to a certain order in e does not necessarily result in the same accuracy 
for h,. 

5. Order zero 
The solution of the problem to order zero and order one does not differ from that 

given in I. We shall nonetheless develop it again using the present version of the 
method of matched asymptotic expansions both as a check of the rather heuristic 
derivation given in I and to illustrate the mathematical technique. 

Upon introduction of the stretched variable rv = q(e))r, into (3.7) and (3.8) we 

- + h 2 ( ~ )  %* +h, = 0. +* 
at, 

The limit form of these equations as e + 0 for varying orders of magnitude of q are 
as follows: 

+ h , = O ,  ordq=ord l ,  

+* 
at, 

V;v, = 0, -+h, = 0, orde < ordq c ord 1, 

V ; v , - s  = 0, .+he % = 0, ordq = orde, 
ate, at ,  

-- a%* - 0, A + h ,  w = 0, ordq < orde. 
ate, at, 

(5.3) 

(5.4) 

(5.5) 

It is clear that (5.4) are contained in (5.3), which we express by saying that (5.3) have 
the domain of validity (Lagerstrom & Casten 1972) 

9jo) = {ql orde < ordq < ordl}. 

BkO) = {q I ord q < ord l}. 

(5.7) 

Similarly (5.4) and (5.6) are contained in (5.5) which therefore is valid in the 
domain 

(5.8) 

Upon reverting to dimensional variables it is readily seen that (5.3) are the 
incompressible formulation, (3.5) of I, which is therefore seen to be appropriate in the 
region T* = O(1) or r = O(Ro), i.e. near the bubble, as expected. This is the inner 
domain aa expressed by the index i in (5.7) and r, is seen to be the appropriate 
variable in this domain. Equations (5.5) coincide with the linearized formulation 
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(3.6) of I which is thus shown to be valid for r* = 0(1/e), or r = O(L), i.e. in the outer 
domain (index o in (5.8)) far from the bubble. An appropriate spatial variable in this 
domain (in the sense that it is of order 1 in it) is evidently, from (4.2), 

r" = er*. (5.9) 

It is clear that the domains (5.7) and (5.8) have a common part, the domain of overlap 
which is given by 

9 ( O )  = {ql orde < ordq < ordl}. (5.10) 

Since in this domain both systems (5.3) and (5.5) reduce to (5.4) their solutions must 
also reduce to each other aa e --+ 0. This is the principle of matching that will supply 
(5.3) with an effective boundary condition at infinity and (5.5) with one near the bubble 
boundary. 

We shall indicate the solution of the inner equations (5.3) by q,, h, since these 
quantities are the zero-order terms in the perturbation series to be constructed. 
These terms are readily found to be 

( 5 . 1 1 ~ )  

(5.11b) 

where here and in the following the prime indicates differentiation with respect to the 
argument. The solution to (5.Q which will be indicated by $,, H, and expressed in 
terms of the outer variable r" defined by (5.9), is 

( 5 . 1 2 ~ )  

(5.12b) I?,(?, t * )  = - = [Fh(t* - ?) + GA( t* + 61, 
where a, is an integration constant. The matching of the two solutions is expressed 
formally by 

lim €+O [vo~7t*)-$o(;rT~t*)] - 0, (5.13) 

for fixed rw and for any function ~ ( e )  belonging to the overlap domain (5.10). A similar 
relation must be satisfied by ho and H,. Upon substitution of (5.11a), ( 5 . 1 2 ~ )  into 
(5.13) it  is readily found that this condition is satisfied if and only if 

P o  =-Go, go(t* )= 2Gh(t*)+aO. (5.14) 

The enthalpy fields also match if these two relations hold. The solution thus 
determined coincides with that given in $5  of I. The kinematic boundary condition 
(3.9) gives 

fo = R&, R;, (5.15) 
and the dynamic one (3.10) 

1 
T 

(5.16) 

or (5.17) 

where h,, is given by (2.10) after non-dimensionalization. This is the Rayleigh- 
Plesset equation written in terms of the enthalpy rather than the pressure as is more 
customary (see the comments in I). 
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6. First order 
In  order to  proceed with the perturbation scheme we set 

Q), = Q ) ' o + q , ,  h, = h,+% (6.1) 

where v0, h, are given by (5.11) and satisfy (5.3) and where Q ) ~ ,  h, are, for the time 
being, such that the exact solution is obtained. In other words, cp, is defined by 
Q), = (Q)*-Q),) /E,  where Q)* is the exact solution, and similarly for h,. Upon 
substitution of (6.1) into (3.7) and use of (5.3) one finds a complicated equation for 
cpl which is given in full in Appendix A. This equation, which is still exact, is now to 
be solved approximately by the same method used at the previous order. Thus, we 
study its formal limits under the scaling (4.2) of the spatial variable and single out 
the distinguished equations. In  this process i t  should be kept in mind that one can 
expect Q), to  be of order 1 only in the domain where Q), is a 'good ' approximation (i.e. 
to  order 1) of the solution of the original problem. Hence, only scalings belonging to 
the inner domain (5.7) should be considered. The same procedure is then carried out 
on the equation for h, which is obtained by substituting (6.1) into (3.8). Further 
details on the method are outlined in Appendix A. Here we proceed directly with the 
results. 

Unlike the situation at the previous order, one finds two distinct distinguished 
limits, both arising from the inner domain. The first one occurs for q = 0(1) and 
is vz,Q), = 0, ( 6 . 2 ~ )  

The second one occurs for q = O(&) and is 

Vcp, = 2Gf(t,), h, = -2, % 
at, 

(6.2b) 

(6.3a, b)  

where the Laplacian is with respect to  the variable 

The domain of validity of (6.2) is found to  be 

9i1) = (71 o r d d  < ordq < ordl}, 

9i1) = (7 I ords < ord q < ord 11. 
while, for (6.3) - 

It may be noted that both domains are contained in the domain of validity (5.7) of 
the zero-order inner approximation and that they overlap in ord& < ordq < ord 1. 

In  a similar way, to obtain the next term in the outer expansion, we set 

Q)* = $0+"11 h, = H , + d , ,  (6.7) 

with $,, H ,  the solutions (5.12) of (5.5) and $,, H ,  exact. When the full equations for 
$, and H , ,  given in Appendix A, are analysed under the scaling (4.2), only one 
distinguished limit results, namely 

(6.8a, b )  
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This limit is obtained for ord r ]  = ord E and has a formal domain of validity ord 
r ]  < ord 1 which must, however, be restricted to (5.8) if #1, H ,  are to be guaranteed 
to be of order 1, as already explained. Equations (6.8) are the same as (5.5). 

The domain of validity of the 'outer inner' equations (6.3) is contained in that of 
the outer equations (6.8) which suggests that (6.3) need not be considered. Indeed it 
is found that matching the solution of (6.2) with that of (6.3), and the latter with that 
of (6.8) leads, to a consistent order, to the same result as matching the solution of 
(6.2) and (6.8) directly in their domain of overlap 

~={r]IordeEf<ordr]<ordl}. (6.9) 

It may be noted that this domain is smaller than the domain of overlap (5.10) of the 
zero-order solution. 

The solution of (6.2a) is the same as (5.11~~) withf,(t,), gO(t,) replaced byf,(t,), 
gl(t*). The kinematic boundary condition (3.9) leads however tof, = 0 and therefore 

Similarly, the solution of (6.8) has the same form as (5.12) with Fo,G, replaced by 

H,) differ, in their respective domains, from the 
exact ones by terms o(1) and therefore the error in using them in (6.1) and (6.7) is o(e).  
Hence the matching condition (5.13) must now take the form 

F,(t* -% G,(t*+r"). 
The solutions found for (ql, h,), 

(6.11) 

for r] in the domain (6.9) and r,, fixed. This condition leads to 

Fl = -fo-Gl, g1 = 2G;+&. (6.12a, b )  

When the same condition (6.11) is applied to the enthalpy fields it is found that 
matching occurs if (6.12) are satisfied, not in the entire domain (6.9) but only in the 
smaller one 

P) = {r]  I ord d < ord r] < ord d}. (6.13) 

The restriction to ord r] < ord ei is made necessary by the term ri4 in h, which cannot 
be balanced by any term in H,+&, and must therefore disappear in the limit 
e -+ 0. This rapid shrinking of the domains of overlap of the inner and outer solutions 
suggests that intermediate solutions may be required at higher orders and indeed this 
will be found to be the case at the next order. 

With (6.12) the outer potential becomes, at this order 

The terms in e represent the effect of the perturbation (i.e. the bubble) on the 
potential far away. It is obvious that in the absence of boundaries the bubble cannot 
affect the incoming pressure perturbation which leads one to set G, = 0. Recalling 
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that fo = RB, R;, we can now write the final form of the potential and enthalpy fields 
valid to order E. In the near field we have 

R2 R 
FIO+Vl = --+2SCJ;(t*)+a0+E(RB,R*)~, r* (6 .15~)  

(RB, R*)' 1 (RB, Re)' 
h,+Eh, = -- -~SCJ~(~*)-E(RB,R;)" ( t*) ;  (6.15 b)  

r* 2 .'* 
while in the far field 

8 
(6.16~) 

Ho + dZl = - - 1 [SCJ;(t* + P )  - a;(t* - P ) ]  + 7 6 (R: E*)' (t* - 7). (6.16 b) 

The effect of the bubble appears in the far field as that of a standard acoustic 
monopole evaluated at  the retarded time t ,  - P or, in dimensional variables, t - r /c , .  
The bubble also gives a small contribution to the space-independent part of the 
near-field enthalpy and potential, which are otherwise unaltered from the previous 
order. These expressions agree with those derived more heuristically in $5 of I. 

With the result (6.15b) for the enthalpy field in the liquid we can now impose the 
second boundary condition (3.10) that the enthalpy on the liquid side of the interface 
equal h,, to find 

1 
$ o + ~ $ 1 =  7 [SCJo(t* +fl-Go(t*-Q]-? (R2, R;) ( t e - 6  +aO, 

P 

(6.17) 

If the indicated differentiation in the last term in the left-hand side is carried out a 
term containing Ri appears. To avoid this we note that, since the error in (6.17) is 
of order E', it is sufficient to approximate this term correctly to order 1. For this 
purpose we differentiate the dimensionless Rayleigh-Plesset equation in the form 
(5.16) and use the result to eliminate (RB,R*)" to find 

(1 -EX*) R,  R; +!( 1 -%%*) R;2 
d 

= ( 1 + E E * )  ( ~ Y B * + ~ ~ ~ ) + E R * - ( ~ B * + ~ ~ ~ ) + O ( E ' ) .  (6.18) 

This is the dimensionless form of the equation derived by Keller and co-workers 
(Keller & Kolodner 1956; Epstein & Keller 1971 ; Keller & Miksis 1980). However 
this form is not unique, as shown in I. If (5.17) is multiplied by EAR; ,  where A is a 
numerical constant of order 1 (or, at any rate, of smaller order than l/e), and 
subtracted from (6.18) one finds 

dt* 

[l - ( A  + 1) EE*] R* R; +% [l- ( A  +i) E R ; ]  R;2 
d 

= [ 1 + ( 1 - A )  ER;] (h,* + 2a3 + ER - (hB* + 263, (6.19) 
dt* 

which evidently has the same accuracy as (6.18). In particular, for A = 1, the form 
given by Herring (1941; see also Trilling 1952) is found. In I (6.19) has been called 
the general Keller-Herring equation. 
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7. Second order 
As in $6 we set, in the inner field, 

q* =q0++1+cpQ)2, h* = ho+eh1+s2h2, (7.1) 

where (qo, ho) are the solutions of (5.3), (q1,h?) are the solutions of (6.2), while 
(q2, h2) are, at  this point, exact. Upon substitution into the original equations (3.7) 
and (3.8) a complicated set of equations is obtained which we shall not reproduce for 
brevity. When an analysis of the formal limits parallel to that done for the zero-order 
cme in $5 is carried out, it is found that only one distinguished limit exists, 
namely 

(7.2a) 

(7.2b) 

where the argument of Q, and f o  is t,. The domain of validity of these equations 
coincides with that of the inner equations of the previous order (6.5). 

In the same way, upon setting 

p* s= # 0 + ~ # 1 + € ~ # 2 ,  h* = H O + ~ ~ + E ~ H , ,  (7.3) 

in (3.7) and (3.8) and taking into account (5.5) and (6.1) one fmds an equation set 
which possesses two distinguished limits. The first one occurs for ord 7 = ord 4. In 
terms of the scaled variable r' defined in (6.4) the corresponding equations are 

vgb2 = 0,  (7.4) 

with a domain of validity 
= {yl ords < ordv < ordd}. 

Formally the upper bound is found to be ord 1 rather then ord d, but the restriction 
is required by consistency with (6.13). The second set of distinguished-limit 
eauations is 

(7.7a) 

(7.7b) 

where 
2 n-1 
r" 

I-(F, t * )  = - (Qi +a') (a: +a:) + r" (@+ - @-) (Q: -Q3 

2 -QL']+-(Q,-Q-) 2 (q-q), (7.8) 
P 

- - [(Q, - a_) (Q: +a:) + @: P 
Q, = Qo(t*kfl, (7.9) 

with the prime indicating differentiation with respect to the argument. Note that in 
the case of free motion r= 0. The domain of validity of (7.7) is 

9i2) = (7 I ord 7 < ord d}, (7.10) 
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SF" = (7 I ord E < ord 7 < ord d} .  (7.11) 

The domain of validity of the inner equations (7.2) overlaps with that of the 
intermediate equations (7.4), (7.5) in 

9(2) = (7 I ord E; < ord 7 < ord E;}. (7.12) 

These two domains are evidently disjoint, which shows that (7.4), (7.5) are essential 
in the mathematical structure of the problem, unlike (6.3) of the previous order. 

The solution of (7.4), (7.5) is 

# - 2 -  +I+, 2 * ,  ( t  ) (7.13a) 

(7.13b) 

where an overbar has been introduced to distinguish these functions from the 
solution of (7.7) which is found to be 

1 
(7.14a) 6 2  = 7 [F,(t-r")-$I, 

(7.14b) 

where, as shown in Appendix B, 

$(r",t*) = 1 I* d7[* [r(r"+6-7,~)+r(r"-O++7,7)]dO. (7.15) 

We proceed now to match (7.13) with (7.14). It should be noted that ($,,a,) and 
(J2,1?,) are to be considered as lowest-order approximations to (#2 ,H2)  defined in 
(7.3) valid in different domains. Hence these solutions should match with a difference 

2 

of o( l ) ,  i.e. 
(7.16) 

for 7 in the domain (7.11). In imposing this condition it is useful to note that, since 
$(O,  t* )  = 0 ,  for r" small one has approximately 

J o  
The result of (7.16) is then 

(7.17) 

(7.18) 

Rather than carrying both (7.13) and (7.14) it is more convenient to combine them 
in a composite expansion as follows: 

I t  is readily verified that, for 7 in the outer domain (7.10), ( # 2 , H 2 ) +  ($2,&,), while 
for 7 in the overlap domain (7.11), (#2 ,H2)+($2 , f i2 ) -  
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The solution of the inner equations (7.2) is 
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(7.19a) 

The kinematic boundary condition (3.9) requires that &p2/ar, = 0 at r ,  = R, and 
leads to 

(7.20) 

The solution (7.19) must now be matched with the intermediate one (7.13). By an 
argument similar to that leading to (6.11) the appropriate condition has the form 

and similarly for the enthalpy, and results in 

(7.22) 

It may be noted that, if the necessity of an intermediate solution had not been 
realized, these same conditions would have been found by matching the inner 
potential ( 7 . 1 9 ~ )  directly with the 'outer outer' one ( 7 . 1 4 ~ ) .  The inner enthalpy 
would have been determined exactly in this way and, since the radial equation of 
motion depends only on this inner field, the proper equation would have been found 
even though the enthalpy fields do not match without the intermediate field (7.13b). 
This procedure would therefore have resulted in a correct equation of motion, but an 
erroneous enthalpy distribution in the liquid. 

We are now in a position to obtain the second-order-accurate equation for the 
radius. 

8. Second-order equations for the radius 

form 

Using the preceding results (6.15b), (7.19b) we find, after some reduction, 

The dynamical boundary condition at the bubble wall is to be imposed in the 

(ho+shl+s2h,) (r,  = R,,t,) = hB,(t*). (8.1) 

R, R; +!R: - 2Gg - E(R: R;)"+S'[(R~, R;)" R, + 2(R: R;)" R; 
-iRt+gR* R;2 R; + R2, Ri2-2Gr R ,  R; - G p  R2, -g;]  = h,, + 0(s2), (8.2) 

where all the quantities have argument t,, and g, is given by the second of (7.22). As 
before we encounter the problem that, upon expansion of the indicated derivatives, 
derivatives of R, up to the fourth order appear. However, since these higher 
derivatives are multiplied by E and e2, the previous, less accurate results can be used 
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for their evaluation. In  particular, upon differentiation of the first-order equation 
(6.17), one finds 

which can be used to express the first term in the square brackets in (8.2) with the 
result 

d 
dt 

R, R; +$R: -2eRd(R;2 + R, R;) -ER* - (h,, + 20;) + e2[2R*(R2, R;)” 

- 2 R 4  6 *  + SR 6 *  R;2 R; + R2 * *  R e  - 2ar R, R* -a: R2, -g;] 

= hB* + 2a; + 0 ( € 2 ) .  (8.4) 

The last step is to eliminate (R2, R;)”. This can be done with an accuracy of order one, 
and hence use can be made of the Rayleigh-Plesset equation (5.16) to find 

(R: R;)” = R*(tR:.+20;+h,.)+R.[R;R;+~(20;+h~*) d 

The final result is 

The non-uniqueness found at the previous step acquires now an extra degree of 
freedom. Indeed, by multiplying the Keller equation (6.18) by (1-A)eR; and the 
Rayleigh-Plesset equation (5.17) by (B+A+ 1) s2R., where again A and B are 
numerical constants of order 1, and adding to (8.6) we find 

[l - ( A  + 1) ER; + (?+2A + B )  ~ ~ 2 R ; a ]  R,R; 

+t[l- ( A  +#) ER; + (#+$A + 6 )  e2R’,2] R;2 + e2R2, Ria 

= [i + (1 - A )  E R  + e a q l  (h,* + 2a;) 

d 
+€[i - (1 + A )  41 R,- (h,* +2a3 

+ 8 [ 2  C;I‘R*R; +a2 R2, +$;I + 0(€8), 
dt * 

(8.7) 

which evidently has the same degree of accuracy as (8.6). 

Rayleigh-Plesset equation (5.17) to express R, R;, we may write 
Still other variants of this equation are possible. For example, using the 

€ 2 ~ :  R ; 2  = E ~ R ,  ~ 3 2 a ;  + h,* -#~;3)  + 0 ( € 3 ) ,  (8.8a) 

€ 2 ~ :  R G ~  = €2(2a;+h,,-%~’,2)2+0(E3). (8.8b) 
or, alternatively, 
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In the first case (8.7) becomes 

+ ~ ' [ 2 a ~ R * E * + a ~ R a * + 8 ~ ] + O ( s ~ ) .  (8.9) 

A corresponding family of equations may be obtained by approximating the 

hB* = PB*-+2Pk* +o(E4), (8.10) 

enthalpy h,, as in (3.1) of I, 

where (8.11) 

with p ,  given by (2.5). The corresponding form of the Rayleigh-Plesset equation 

(8.12) 
(5.171, 

R,R;+#Ri = 20,"+pB*+O(s), 

can then be used to eliminate the term (eR,R;)2 as in (8.8b). For free motion (i.e. 
with a, = 0, g2 = 0), with the choice h = 1, 8 = 0, the resulting equation is 

This is the non-dimensional form of the equation derived by Tomita & Shima (1977 ; 
see also Fujikawa & Akamatsu 1980). Although this equation has the same order of 
accuracy as all the others, it possesses the spurious equilibrium solution 

(8.14) 

This large value of p,,  is evidently outside the range where the perturbation 
procedure can be expected to be accurate, but its formal existence may cause 
difficulties in numerical integration. 

While observations such as the one just made may indicate that some equations 
are less suitable than others, it is clear that no a piori criteria exist for the selection 
of one particular form. Furthermore, examination of (8.7) does not give any 
indication about a possible optimal choice of the parameter h for the first-order 
equation (6.19). We shall examine the performance of (8.7) and (8.9) by comparison 
with the numerical solution of the original partial-differential-equation formulation 
in $10. In $ 11 other equations available in the literature will be examined in the light 
of our results. 

It may be of some interest to note as a final point that, in the case of forced motion, 
all the second-order equations contain the term g; ( t*)  which, as is clear from the 
definition (7.18), depends on the past history of the incoming pressure field. 
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9. Composite expansions for the fields 
In the preceding sections the solution for the enthalpy and potential has been 

obtained in the form of expansions valid in different regions of the liquid. We propose 
here to combine these results deriving single expressions uniformly valid to orders 1 
and E throughout the liquid, the so-called composite expansim. The most direct 
approach to this task runs into a difficulty which will be illustrated in its simplest 
form for the order-1 case. From (5.11) and (5.12) it is clear by inspection that 

(9.la) 

reduce to the appropriate forms in the inner and outer domains with errors of order 
o(l) ,  i.e. consistent with the degree of accuracy of (5.11) and (5.12) themselves. While 
expressions such as (9.1) and their higher-order analogues are formally valid 
throughout the liquid, their use runs into practical difficulties as they satisfy the 
boundary conditions at the bubble boundary only in the limit E + O ,  and not for E 

small but finite. The problem can be illustrated by considering the velocity field 
obtained from the first-order analogue of (9.la),  which is shown by the dashed line 
in figure 1 .  In this figure the bubble-wall trajectory in the phase plane (Re ,  R i )  is 
represented by the dash-and-dot line (in fact a single line, which appears interrupted 
in the figure because the minimum is out of scale). The lines representing the velocity 
fields in the liquid at every instant of time should issue from this dash-and-dot line 
from the particular point (R*, R;) corresponding to that instant. For the instant to 
which the figure refers this value is at the common origin of the two continuous 
curves marked (a )  and ( b )  (to be discussed a t  the end of this section). Clearly, the 
dashed line comes nowhere close to the correct boundary value for the velocity. 

The source of the problem, and a possible remedy, are clearly seen by 
differentiating, (9.la) to obtain the velocity at R, :  

Although the terms containing Go cancel in the limit E + 0, an error remains for finite 
E .  This error would not arise if the argument of Go were 

7* = t* +E[r*--R*(t*)l, (9.3) 

rather than t ,  kw*. This dependence can be obtained by setting t ,  f e r *  = 7* f aR, 
in (9.1) and expanding in Taylor's series centred about 7 * .  The result is 
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FIGURE 1. Dimensionless liquid velocity in the neighbourhood of the bubble according to the first- 
order composite expansion ( 9 . 5 ~ )  (curve a) and to the first-order inner result ( 6 . 1 5 ~ )  (curve b) 
during the deceleration phase near the end of the first collapse. The dashed line is the result of a 
first-order composite expansion similar to ( 9 . 1 ~ ) .  The dash-and-dot line is the bubble wall 
trajectory in the (It,,&) plane, the minimum of which is out of scale. These results are for a 
bubble in free collapse with initial conditions R,(O) = 4, R ; ( O )  = 0 at time t, = 3.6824 a t  which 
R, = 0.117, R; = -6.89. 

In a similar manner the following expansions valid to O(s) are found: 

qt) = - 1 [G0(7+) - G ~ ( T - ) ]  +- R* [Gh(7+) + G ~ ( T - ) ] - -  fo(7-) 

€T* r* r* 

---- E - { 2  R* ' R  *[ G"'(T 0 + )-w(~-)]+g(7-)}, (9.5b) 
2 r: r., 

where fo = R:R* and all the R, have argument t,. The corresponding results at 
O(e2) are very complicated and for simplicity we give the corresponding expressions 
only for the free case in which (3, = 0. One has 

(9.6b) 
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RQURE 2. Normalized pressure field in the neighbourhood of the bubble for the same conditions 
&B in the previous figure. Curve (a) is the composite expansion and curve ( b )  the inner result. The 
dash-and-dot line is the liquid pressure just outside the bubble plotted aa a function of R,. The 
pressure is referred to the undisturbed pressure at infinity. 

The actual evaluation of the above expressions runs into the same difficulties 
encountered in the derivation of the radial equations due to the appearance of 
derivatives of the function fo = RZ, R*. These quantities can be evaluated in a variety 
of ways all equivalent to a certain order in E .  However some care is necessary to avoid 
inconsistencies between the limit form of the expressions as T* + R,  and the values 
at the boundary. For the first-order enthalpy field (9.5b) we evaluate e g  from the 
first-order equation in the form (6.19) to find 

It is readily verified that for r* = R,, F.:) equals hB*. A similar procedure can be 
developed for the second-order fields (9.6) but the formulae are very involved and 
will not be given. 

The practical implications of using the composite expansion for the fields can be 
appreciated in the example of figure 1 where the solid line marked (a) is obtained 
from the composite expansion (9.6a) while the one marked (b) is the inner field 
(6.15a). As already noted the dash-and-dot line is the bubble-wall trajectory in the 
phase plane (R*,E*), The velocity fields are shown during the deceleration phase 
immediately before the end of the first collapse (for the exact conditions of the 
calculation see the caption to fig. 1). The composite expansion (line a) clearly shows 
the presence of the compression wave caused by the deceleration of the motion, 
which is absent from the inner, essentially incompressible, result (line b). The same 
features can be observed in figure 2 where the pressure distribution is shown. 
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10. Numerical results 
Some general features of the dynamics of a freely oscillating bubble are illustrated 

in figures 3 and 4 where the radius and the radial velocity are shown as a function 
of time. Here, as in all the subsequent results, the internal pressure is given by the 
adiabatic expression 

3Y 

Pi = P i , @ )  5 
(10.1) 

where y is the ratio of the specific heats of the gas, R, is the equilibrium radius, also 
used as the unit of length, and pi, is the equilibrium internal pressure given by 

The velocity unit introduced in (3.1) is 

(10.2) 

(10.3) 

In all the examples we take the following numerical values: y = 1.4, p m  = 1 bar, 
pm = 0.998 g/cm, ,u = 0.01 P, u = 72.5erg/cme, R, = 0.01 cm, B = 3049 bar, n = 
7.15. With these we fkd  c, = 1478.2 m/s, U = 10.010 m/s, T = 10 p, em* = 147.67. 
It can readily be verified that, after the non-dimensionalizations (3.1) and (8.11), 
dimensional quantities enter only through the parameter E and 

(10.4) 

which, with the previous values, are MI = 0.0145 and M ,  = 4.00 x Since both 
parameters are important only when they are of order one, it may be concluded that 
the results to be shown are typical of sufficiently large bubbles for which the effect 
of M, and M, is negligible. 

The initial conditions for figures 1-8 are R,(O) = 4, R ; ( O )  = 0. In figure 3 the result 
of the Rayleigh-Plesset equation (5.17) (dash and dot line) is compared with the first- 
order equation (6.18) (dashed line) and the second-order equation (8.9) with h = 0.5, 
8 = 0 (solid line). The energy lost by radiation is seen to be quite large and the 
Rayleigh-Plesset equation, although very accurate during the first collapse, grossly 
overpredicts the rebound and the period of oscillation. The difference between the 
first- and second-order results is much smaller, with the first-order equation slightly 
overpredicting the amount of energy radiated. This leads to smaller maximum radii 
and consequently somewhat shorter periods of oscillation. This is confirmed by figure 
4 which shows the radial velocity in the vicinity of the second minimum of figure 3 
as predicted by the same first- and second-order equations. 

Figures 5-11 are devoted to a comparison of the approximate results obtained in 
this paper with those given by a direct numerical integration of the exact partial 
differential formulation. These ‘exact’ numerical results are the same as those 
presented in I and no details about the numerical method will be repeated here. We 
only recall that, for reasons of economy, the numerical integration was started a t  a 
time f* > 0 using the composite expansions (9.5) to determine the initial distribution 
of the potential and enthalpy fields in the liquid. 

The error of the approximations made is most evident at  high velocity or high 
pressure, both of which are found in the neighbourhood of the radius minima [cf. 
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FIGURE 3. Bubble radius as a function of time for free oscillations with initial conditions R,(O) = 
4, R ; ( O )  = 0. The solid line is the result given by the second-order equation (8.9) with A = 0.5, 
0 = 0. The dashed line is according to the first-order equation (6.18), and the dash-and-dot line is 
the zero-order Rayleigh-Plesset equation (5.17). 
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FIGURE 4. Dimensionless radial velocity as a function of time in the vicinity of the second minimum 
of the previous figure. The solid and the dashed lines are according to the second- and first-order 
equations, respectively. 

t* 

figure 4 and (10. l)]. As in I we consider the values predicted by the different second- 
order equations for the first minimum radius, the minimum velocity during the first 
collapse (which is a maximum in absolute value), and the maximum velocity during 
the first rebound. Shortly after this point of maximum velocity a shock wave is 
formed in the liquid and the numerical method used, based on the characteristics of 
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FIQURE 5. Dimensionless maximum velocity attained during the first rebound versus the 
dimensionless minimum radius at the end of the preceding collapse (which is completed at a 
dimensionleas time close to 3.68 depending on the equation used) for the initial conditions R,(O) = 
4, Ri(0 )  = 0. The crossw are the ‘exact’ numerical results obtained starting from t, = 3.6653, 
R ,  = 0.5522, R, = - 14.26 (point 1 )  and starting from t, = 3.6250, R, = 0.9322, R, = -6.863 
(point 2). The other points are the results obtained from the approximate ordinary differential 
equations. The filled symbols are for equations written in terms of the enthalpy, the open ones in 
terms of the pressure. Triangles: first-order equations with, from right to left, A = 1,0.75,0.5,0.25, 
0. Diamonds : second-order equations quadratic in the radial acceleration. Circles : second-order 
equations after the substitution (8.8a). For the second-order equations 8 = 0 and A aa above, 
decreasing downwards. 

the system, ceases to be applicable. In all the figures black symbols refer to results 
obtained from equations written in terms of the enthalpy and open symbols to results 
obtained from equations written in terms of the pressure. 

Figure 5 shows the maximum dimensionless velocity plotted as a function of the 
minimum radius. The ‘exact’ numerical results are indicated by the two crosses 
which correspond to different starting conditions. We include two such results to give 
an indication of the error that can be expected to affect the numerical calculation. 
The triangles are results predicted by the first-order equations (6.19) in terms of the 
enthalpy (black triangles) and of the pressure (i.e. the same equation with p,, in 
place of hB*, cf. @.lo), open triangles), and are identical with those of figure 1 of I. The 
circles are obtained from the second-order equation (8.9) written in terms of the 
enthalpy (solid symbols) or in terms of the pressure (open symbols). The diamonds 
are obtained from the second-order form (8.7) treated as a quadratic in R; and solved 
analytically for this quantity. The first-order results have been obtained with (from 
left to right) A = 1, 0.75, 0.5, 0.25, 0 and the second-order ones with 8 = 0 and the 
same values of h (increasing upwards). 

A first qualitative comment is that all the second-order results tend to be closer to 
the ‘exact’ ones than the first-order results and tend to exhibit a somewhat smaller 
scatter. For the reasons mentioned in 93 and in I use of the enthalpy also proves 
beneficial, and decreases the difference between the forms linear and quadratic in 
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FIQURE 6. Dimensionless minimum velocity (maximum in absolute value) during the first collapse 
versus the dimensionless minimum radius at the end of the collapse for the same cases as in the 
previous figure. Again 0 = 0 and A = I ,  0.75, 0.5, 0.25, 0 decreasing upward for each family of 
points. The c r o w  are the 'exact' numerical results. 
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FIQIJRE 7. Effect of varying the parameter 8 on the results of figure 5. The three points connected 
by the dashed lines correspond ta A = 0.5, 8 = 1 (upper left), A = 0.5,8 = 0 (middle), and A = 0.5, 
8 = - 1 (lower right). Results for intermediate values of B fall along the daahed lines. The other 
points are those for 8 = 0 already shown in figure 5. The cross is the 'exact ' numerical result (point 
1 in figure 5). 
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FIGURE 8. Effect of varying the parameter B on the results of figure 6. The parameter B goes from 
1 to - 1 describing the dashed lines from left to right. See the caption to the preceding figure. 

Rl. The same conclusions can be drawn from figure 6, in which the minimum 
dimensionless velocity during the first collapse (maximum in absolute value) is 
plotted versus the minimum radius. It is clear from figure 6 that the excessive 
radiated energy predicted by the first-order equations is a consequence of a more 
violent collapse which leads to a higher maximum pressure. In figures 7 and 8 we 
demonstrate the effect of varying the second parameter 8 on the results of figures 
5 and 6. In  both figures the dashed lines go through the points corresponding to 
(A = 0.5, 8 = 1, left), (A = 0.5, 8 = 0), and (A = 0.5, 8 = - 1, right) and indicate the 
trend of the results for - 1 < 8 < 1. The other points are for 8 = 0 and, from left to 
right, A = 1,0.75,0.5,0.25 and 0, aa before. The first-order points have been omitted. 
These and other similar results indicate that a value of 8 close to zero is optimal, at 
least for the cases investigated. 

Figures 9 and 10 are similar to figures 5 and 6 but for an initial value of the radius 
R,(O) = 6. Such a large value is probably unrealistic because the bubble would most 
likely shatter before rebounding, but these results are useful to confirm the trends 
found in the previous case since here the maximum Mach number is close to 1. 
Finally, figure 11 is for R,(O) = 3. Here, the maximum Mach number is 
approximately 0.13 and all the second-order results lie very close to each other. 

Some results for a case of forced motion are shown in figure 12. The incident wave 
has the same form used in I, namely 

ao(t,) = $h)iA7(t,-t0) e r f ( s ) + u T 2  exp [ - ( ‘ * - t o ) 2 ] ,  2~~ (10.5) 
4 2  

with A = - 300, T = 0.01, and to = 0.447 66. A graph of the radius as a function of 
time for this cme is shown in figure 13. The dash-and-dot line is the zero-order result 
(5.17), the dashed line is the first-order result (6.18), and the continuous line is the 
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FIGURE 9. Same as figure 5 for R,(O) = 6. The parameter A has the values 1,0.75, 0.5, 0.25, 0 from 
left to right for the triangles (first-order equations) and from top down for the second-order points. 
f? = 0 for the latter. See caption to figure 5. 
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FIGURE 10. Same as figure 6 for R,(O) = 6. The parameter h has the values 1,0.75,0.5,0.25,0 from 
left to right, for all families of points, and 0 = 0. The 'exact' numerical result has been obtained 
starting the numerical integration from R, = 0.831, R, = - 14.668. 
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FIQURE 11.  Same aa figures 6 and 10 but for R,(O) = 3. The filled triangle corresponding to A = I 
is out of scale and is not included. The cross is the 'exact' numerical result obtained starting from 
R,  = 0.8458, R = -5.016. 
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FIQURE 12. Same as figures 5 and 9, but for the forced-collapse case. The first-order results 
(triangles) are for A = 1, 0.75, 0.5, 0.25, 0 from left to right. The parameter values for the second- 
order results are indicated in parentheses aa (A, 0) .  The cross is the 'exact ' numerical result. 
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FIGURE 13. Normalized bubble radius aa a function of time for the forced-collapse case. The solid 
line is the second-order equation (8.7) with A = 0.5,8 = 0, the dashed line is the first-order equation 
(0.18), and the daah-and-dot line is the zero-order equation (5.17). 
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FIQURE 14. Pressure distribution in the liquid in the forced-motion case computed numerically 
from the partial differential formulation at times 0.40462 (curve l),  0.41874 (curve 2), 0.43218 
(curve 3), 0.44233 (curve 4). The corresponding values of the bubble wall velocity are -0.001, 
-0.1, -1.47, -4.41. 
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FIGURE 15. Same aa in the previous figure for t, = 0.45246, R, = -7.35 (curve 5), t, = 0.45957, 
R,=-8 .82  (curve6),t,=0.46734, R,=-10.3 (curve7),te=0.47353, R,=-11.76 (curve8), 
t ,  = 0.48154, R, = -14.7 (curve 9), and t, = 0.49404, R, = -29.4 (curve 10). 

I I I I I I 1 
0 2 4 6 

r. 

FIGURE 16. Enlargement of the lower left-hand corner of figure 15. For the key to the numbering 
of the curves see the caption to 6gure 15. The dashed line is the undisturbed value of the 
pressure. 
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FIQURE 17. Continuation of figures 14 and 15. Note the change in both scales. The curves are for 
t, = 0.49404, R; = -29.4 (curve 10; this curve is also shown in figures 15 and 16), t, = 0.497 16, 
R; = -44.4 (curve l l ) ,  t, = 0.49807, R; = -51.4 (curve 12), t ,  = 0.49916, R', = -51.4 (curve 13; 
the minimum velocity is attained between these two instants), t ,  = 0.49965, R, = -29.4 (curve 
14). 

second-order result (8.7) with A = 0.5, 0 = 0. The comparison among the different 
approximations is similar to that in figure 3. 

We conclude this section with an illustration of the pressure field in the liquid in 
the forced case as calculated numerically ; similar results for free collapse are already 
available in the literature (Hickling & Plesset 1964; Fujikawa & Akamatsu 1980). 
Figure 14 shows the incident pressure pulse (10.5) at different instants as i t  moves 
towards the bubble and grows owing to geometrical focusing. The maximum is 
reached near t ,  = 0.44233 (curve 4), after which the pulse is reflected (figure 15). It 
is only at this time that significant motion and pressure disturbances begin to 
develop near the bubble as is particularly clear in figure 16 which is an enlargement 
of the lower left-hand corner of figure 15. Once set into inward motion, the bubble 
continues to compress seemingly independently of the external pressure field. The 
internal pressure gradually builds up reaching a maximum value more than 9000 
times the initial one (figure 17; note the change in the vertical scale). 

It has not been possible to  compare the numerical results with the composite 
expansions for the fields given in the previous section in a meaningful way because 
the motion is too rapid. For example, in figure 17 the top two lines correspond to 
t ,  = 0.499165 and 0.499650 respectively. At a fixed time, therefore, even a slight 
difference in phase between the analytical and numerical solutions (caused, for 
instance, by slightly different starting conditions for the latter, cf. caption to figure 
5) can give rise to large discrepancies of little significance. On the other hand, since 
the fields depend on the history of the motion, it is difficult to justify criteria for 
comparison other than a t  equal time. 
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11. Conclusions 
On the basis of the limited number of cases for which the 'exact' numerical 

solution has been compared with the approximate one we can now attempt to draw 
some tentative conclusions. The first point concerns whether use of one of the second- 
order equations which, especially in the forced case, are much more complex than the 
first-order ones, is warranted by the associated gain in accuracy. The answer is 
probably negative unless the maximum Mach number reached by the bubble wall 
exceeds 0.5 or the internal pressure exceeds 5000 times the undisturbed value. It was 
found in I that the value A = 0, corresponding to the Keller form, resulted in a close- 
to-optimal first-order equation. The dimensional form of this equation is 

1 +c;l -+c-,l dR R i )  (h,-p(tL:pw), = (  dt dt 

where h, is given by (2.10) and p(t)  is the (spherically symmetric part of the) liquid 
pressure a t  the bubble site in the absence of the bubble. If, however, a second-order 
equation is to be used, our results seem to indicate that parameter values close to 
(A = 0.5, 8 = 0) and the form (8.7) quadratic in the acceleration give good results. 
The dimensional form of this equation is 

where g2 is given by (7.22). In any case, equations containing the enthalpy should be 
preferred. 

It should be stressed that these conclusions have been arrived at  on the basis of a 
limited number of examples. Although these appear to be representative of 
situations of practical interest it should be borne in mind that the effect of shock- 
wave formation in the liquid has not been examined. Hence, for example, it is 
impossible to aasess the accumulated error affecting the approximate equations after 
a number of repeated oscillations. 

The only second-order equations available before this work were the ones derived 
by Tomita & Shima (1977) and the related one by Fujikawa & Akamatsu (1980). 
These equations are in terms of the pressure, rather than the enthalpy, and are not 
quadratic in the bubble-wall acceleration. Furthermore, they are applicable only to 
the case of free motion. Other equations containing some, but not all, second-order 

11-2 
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terms have been proposed. Those of Flynn (1975) and Rath (1980) are, in this 
respect, very incomplete. When second-order terms are dropped they reduce to the 
Keller and Herring forms, respectively, written in terms of the pressure. Tilmann 
(1980) has derived an equation in terms of the enthalpy similar to our (8.7) with 
h = 0,O = 2. The only differences are that the substitution (8 .8b)  is used and that the 
terms e2[GER: + g;] do not appear. Except for this second feature, which has an effect 
only in the case of forced motion, Tilmann’s equation is therefore a valid second- 
order approximate equation. Another equation containing the enthalpy was given by 
Gilmore (1952). This equation has already been discussed in I where it was shown to 
be a poorer approximation than the first-order Keller equation. From a consideration 
of our results it appears that the strongest reason for its apparent success noted by 
Hickling & Plesset (1964) is the use of the enthalpy rather than the pressure. 

The present study has been supported in part by the Courant Institute of 
Mathematics, New York University, through the grant ONR N00014-81-K-0002. 

Appendix A 
Here we give details of the solution procedure at first order carried out in $6. 
The exact equations found upon substitution of (6.1) into (3.7), (3.8) are 

-+--+hl++€ %l % O + l  

at, ar, ar, 

Upon introduction of the scaled variable (4.2) r,, = ~ ( e ) r , ,  with 7 constrained to 
belong to the zero-order inner domain (5.7), these equations take a form which can 
schematically be indicated as follows : 

€ €2 azvl 
v2 72 at: v;v, = - [20;1’+0(7)]+--+O(s2,s472),  
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The first term in the right-hand side of ( A 2 a )  arises from the term sa%po/at: in 
(A la) ,  and only the leading orders of the remaining terms have been indicated. 

The formal limits of the system (A 2 )  are 

%l fowl 

%l 

at, 

v2% = 0, -+- -+ h, = 0, at, r: ar, 

-+h, = 0, 

ordq = ord 1, 

ordsi < ordq < ord 1, v:tpl = 0, 

0, ordq = ordd, v f ~ ,  = 2@:, -+h, = %l 

at, 

(A 6 )  

Clearly, (A3) contains (A4)  and (A5) contains both (A4)  and (A6). Therefore 
(A 3) and (A 5 )  are the distinguished limits given in $6 as (6.2) and (6.3) and their 
domain of overlap is the domain of validity of (A 4) given in (6.5). 

0 = 2Gl, -+h, %l = 0, ords < ordq < ordsi. 
at, 

In a similar way the introduction of (6.7) into (3.7), (3.8) leads to 

Again setting r,, = q ( s )  r,, with q belonging now to the domain of validity (5.8) of the 
zero-order outer solution, one finds 
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for ord 6 < ord q < ord 1, while 
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for ord q < ord E. 

The formal limits of (A 8) are 

a41 - + H l  = 0, 
at* 

v; $1 = 0, ords < ordq < ord 1, 

while from (A 9) we have 

-- - 0, %+H1 = 0, ordq < ords. 
at: at* 

The only distinguished limit is (A l l ) ,  since it contains both (A 10) and (A 12). This 
equation is therefore valid in the whole domain ord q < ord 1. 

Appendix B 

of ( 7 . 7 ~ ) .  The second derivative of + with respect to  r" may be written 
Here we shall verify the correctness of the expression (7.15) as a particular solution 

Differentiating + with respect to time we find 

and repeating the operation 

which, by (B l),  may be written as 

-- a'+ 
at: ar"2 
a'+ - f(r",t*)+- 

which may be made to coincide with ( 7 . 7 ~ )  by the substitution 4' = -$cr/r" as in 
( 7 . 1 4 ~ ) .  In the further manipulations involving the function r in 97 i t  is helpful to 
bear in mind that it is an odd function of r", as follows from its definition (7.8). 
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